1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties of Determinants
Show that x...
Question
Show that
∣
∣ ∣ ∣
∣
x
x
2
y
z
y
y
2
z
x
z
z
2
x
y
∣
∣ ∣ ∣
∣
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
y
+
y
z
+
z
x
)
Open in App
Solution
∣
∣ ∣ ∣
∣
x
x
2
y
z
y
y
2
z
x
z
z
2
x
y
∣
∣ ∣ ∣
∣
Divide and multiply respectively 1st row by
x
2nd row by
y
3rd row by
z
we get
1
x
y
z
∣
∣ ∣ ∣
∣
x
2
x
3
x
y
z
y
2
y
3
x
y
z
z
2
z
3
x
y
z
∣
∣ ∣ ∣
∣
Δ
=
x
y
z
x
y
z
∣
∣ ∣ ∣
∣
x
2
x
3
1
y
2
y
3
1
z
2
z
3
1
∣
∣ ∣ ∣
∣
Δ
=
∣
∣ ∣ ∣
∣
x
2
x
3
1
y
2
y
3
1
z
2
z
3
1
∣
∣ ∣ ∣
∣
R
2
→
R
2
−
R
1
we get
Δ
=
∣
∣ ∣ ∣
∣
x
2
x
3
1
y
2
−
x
2
y
3
−
x
3
0
z
2
−
x
2
z
3
−
x
3
0
∣
∣ ∣ ∣
∣
Expand the determinant over 3rd column
We get
Δ
=
(
y
2
−
x
2
)
(
z
3
−
x
3
)
−
(
y
3
−
x
3
)
(
z
2
−
x
2
)
Δ
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
y
+
y
z
+
z
x
)
[
h
e
n
c
e
p
r
o
v
e
d
]
Suggest Corrections
0
Similar questions
Q.
Solve:
∣
∣ ∣ ∣
∣
x
x
2
y
z
y
y
2
z
x
z
z
2
x
y
∣
∣ ∣ ∣
∣
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
y
+
y
z
+
z
x
)
.
Q.
Using the properties of determinants, show that:
∣
∣ ∣ ∣
∣
x
x
2
y
z
y
y
2
z
x
z
z
2
x
y
∣
∣ ∣ ∣
∣
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
y
+
y
z
+
z
x
)
Q.
Prove that :
∣
∣ ∣ ∣
∣
x
x
2
y
z
y
y
2
z
x
z
z
2
x
y
∣
∣ ∣ ∣
∣
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
y
+
y
z
+
z
x
)
Q.
Prove that
∣
∣ ∣ ∣
∣
1
1
1
x
2
y
2
z
2
x
3
y
3
z
3
∣
∣ ∣ ∣
∣
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
y
+
y
z
+
z
x
)
Q.
|yуг9.zx =(x-y) (y-z) (z-x) (xy + yz + zr)
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Properties
MATHEMATICS
Watch in App
Explore more
Properties of Determinants
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app