wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that: cos145+cos11213=cos13365

Open in App
Solution

Let a=cos145
cosa=45 ---- ( 1 )
We know that,
sin2a=1cos2a
sina=1cos2a
=1(45)2

=11625

=251625

=925

=35

sina=35 ---- ( 2 )
Let b=cos11213
cosb=1213 ---- ( 3 )
We know that,
sin2b=1cos2b
sinb=1cos2b
=1(1213)2

=1144169

=169144169

=25169

=513

sinb=513 ----- ( 4 )
cos(a+b)=cosacosbsinasinb
From ( 1 ), ( 2 ), ( 3 ) and ( 4 ) we get
cos(a+b)=45×121335×513

=4865313

=481565

=3365
cos(a+b)=3365
a+b=cos1(3365)
cos145+cos11215=cos13365
Hence, L.H.S=R.H.S

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon