LHS
=cos2θcosθ2−cos3θcos9θ2
12[2cos2θcosθ2−2cos3θcos9θ2]
(multiply & divide equation by 2)
[now, we know that 2cosAcosB=cos(A+B)+cos(A−B)]
=12[cos(5θ2)+cos(3θ2)−cos(15θ2)−cos(−3θ2)]
[now, cos Function is even i.e., cos(−θ)=cosθ]
so, LHS=12[cos(5θ2)−cos(15θ2)]
=12[2sin(5θ+15θ2×2)sin(15θ−5θ2×2)]
(we know that, cosA−cosB=2sin(A+B2)sin(B−A2))
=sin5θsin5θ2
=RHS