Show that :Cos24°+Cos55°+Cos125°+Cos204°+Cos300°=12
To prove that :Cos24°+Cos55°+Cos125°+Cos204°+Cos300°=12
L.H.S =Cos24°+Cos55°+Cos125°+Cos204°+Cos300°
=Cos24°+Cos55°+Cos(180°-55°)+Cos(180°+24°)+Cos(270°+30°)
=Cos24°+Cos55°–Cos55°–Cos24°+Sin30°[∵cos(180°-x)=-cosx,cos(180°+x)=-cosx,cos(270°+x)=sinx]
=Sin30°
=12
=RHS
Thus,Cos24°+Cos55°+Cos125°+Cos204°+Cos300°=12.
Hence proved.