CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that cosπ15cos2π15cos3π15cos4π15cos5π15cos66π15cos7π15=1128

Open in App
Solution

LHS=cosπ15cos2π15cos3π15cos4π15cos5π15cos66π15cos7π15
=cosπ15cos2π15cos4π15cos3π15cos5π15cos66π15cos7π15
=12sinπ15×2sinπ15cosπ15cos2π15cos4π15cos3π15cos5π15cos66π15cos7π15
=12sinπ15×sin2π15cos2π15cos4π15cos3π15cos5π15cos66π15cos7π15
=14sinπ15×2sin2π15cos2π15cos4π15cos3π15cos5π15cos66π15cos7π15
=14sinπ15×sin4π15cos4π15cos3π15cos5π15cos66π15cos7π15
=18sinπ15×2sin4π15cos4π15cos3π15cos5π15cos66π15cos7π15
=18sinπ15×sin8π15cos3π15cos5π15cos66π15cos(π8π15)
=116sinπ15×2sin8π15cos8π15cos3π15cos5π15cos66π15
=116sinπ15×sin16π15cos3π15cosπ3cos66π15
=132sinπ15×sin(π+π15)cos3π15cos(4π6π15)
=132×cosπ5cos2π5
=132×cosπ5cos2π5
=132×cos36cos(9018)
=132×5+14×sin18
=132×5+14×514
=132×5116
=132×416
=132×14
=1128=RHS
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Area
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon