Show that cos(2 tan−117)=sin(4 tan−113).
We have, cos(2 tan−117)=sin(4 tan−113)⇒ cos⎡⎣cos−1⎛⎝1−(17)21+(17)2⎞⎠⎤⎦=sin[2.2 tan−113] [∵ 2tan−1 x=cos−1(1−x21+x2)]⇒ cos[cos−1(48495049)]=sin⎡⎣2.⎛⎝tan−1231−(13)2⎞⎠⎤⎦ [∵ 2 tan−1 x=tan−1(2x1−x2)]⇒ cos[cos−1(48×4950×49)]=sin[2 tan−1(1824)]⇒ cos[cos−1(2425)]=sin(2 tan−134)⇒ cos[cos−1(2425)]=sin[sin−12×341+916] [∵ 2 tan−1 x=sin−12x1+x2]⇒ 2425=sin(sin−13/225/16)⇒ 2425=4850⇒ 2425=2425∴ LHS=RHS Hence proved.