Given :
⇒cos(B−C)+cos(C−A)+cos(A−B)=−32
⇒(cosBcosC+sinBsinC)+(cosCcosA+sinCsinA)+(cosAcosB+sinAsinB)=−32
⇒2(cosBcosC+sinBsinC)+2(cosCcosA+sinCsinA)+2(cosAcosB+sinAsinB)+3=0→1
We know that sin2A+cos2A=1
⇒sin2B+cos2B=1 & sin2C+cos2C=1
∴sin2A+sin2B+sin2C+cos2A+cos2B+cos2C=3
1⇒∴sin2A+sin2B+sin2C+2sinAsinB+2sinBsinC+2sinCsinA+cos2A+cos2B+cos2C+
2cosAcosB+2cosBcosC+2cosCcosA=0
⇒(sinA+sinB+sinC)2+(cosA+cosB+cosC)2=0
If sum of the positive quantities=0. Then both must be zero (0)
∴sinA+sinB+sinC=0 & cosA+cosB+cosC=0
⇒If we square and add (sinA+sinB+sinC=0) & (cosA+cosB+cosC=0)
⇒Then we get cos(B−C)+cos(C−A)+cos(A−B)=−32