wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that cos(BC)+cos(CA)+cos(AB)=32 if and only if cosA+cosB+cosC=0 and sinA+sinB+sinC=0

Open in App
Solution

Given :
cos(BC)+cos(CA)+cos(AB)=32

(cosBcosC+sinBsinC)+(cosCcosA+sinCsinA)+(cosAcosB+sinAsinB)=32

2(cosBcosC+sinBsinC)+2(cosCcosA+sinCsinA)+2(cosAcosB+sinAsinB)+3=01

We know that sin2A+cos2A=1

sin2B+cos2B=1 & sin2C+cos2C=1

sin2A+sin2B+sin2C+cos2A+cos2B+cos2C=3

1sin2A+sin2B+sin2C+2sinAsinB+2sinBsinC+2sinCsinA+cos2A+cos2B+cos2C+
2cosAcosB+2cosBcosC+2cosCcosA=0

(sinA+sinB+sinC)2+(cosA+cosB+cosC)2=0

If sum of the positive quantities=0. Then both must be zero (0)

sinA+sinB+sinC=0 & cosA+cosB+cosC=0

If we square and add (sinA+sinB+sinC=0) & (cosA+cosB+cosC=0)

Then we get cos(BC)+cos(CA)+cos(AB)=32

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon