Let x=sin−1√1317
sinx=√1317=AltitudeHypotenuse
Hence, Base=√√172−√132=√17−13=√4=2.
Cotx=BaseAltitude=2√13
Similarly,
x=tan−123
tanx=23=AltitudeBase
Hence, Hypotenuse=√32+22=√9+4=√13.
sinx=AltitudeHypotenuse=2√13.
Hence proved.
Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2