4
You visited us
4
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Sum of Trigonometric Ratios in Terms of Their Product
Show that: θ...
Question
Show that:
cot
θ
−
tan
θ
=
2
cos
2
θ
−
1
sin
θ
cos
θ
Open in App
Solution
cot
θ
−
tan
θ
=
2
cos
2
θ
−
1
sin
θ
cos
θ
⇒
2
cos
2
θ
−
(
sin
2
θ
+
cos
2
θ
)
sin
θ
cos
θ
⇒
cos
2
θ
−
sin
2
θ
sin
θ
cos
θ
=
cos
θ
sin
θ
−
sin
θ
cos
θ
=
cot
θ
−
tan
θ
.
Suggest Corrections
1
Similar questions
Q.
Prove that
cot
θ
−
tan
θ
=
2
cos
2
θ
−
1
sin
θ
cos
θ
Q.
Show that,
⎡
⎣
1
−
tan
θ
2
tan
θ
2
1
⎤
⎦
⎡
⎣
1
tan
θ
2
−
tan
θ
2
1
⎤
⎦
−
1
=
[
cos
θ
−
sin
θ
sin
θ
cos
θ
]
.
Q.
tan
θ
(
1
+
tan
2
θ
)
2
+
cot
θ
(
1
+
cot
2
θ
)
2
=
sin
θ
cos
θ
.
Q.
Prove the following trigonometric identities.
(i)
cot
θ
-
tan
θ
=
2
cos
2
θ
-
1
sin
θ
cos
θ
(ii)
tan
θ
-
cot
θ
=
2
sin
2
θ
-
1
sin
θ
cos
θ