wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that cube of any position integer will be in the form of 8m or 8m+1 or 8m+3 or 8m+5 or 8m+7,where m is a whole number.

Open in App
Solution

As per Euclid's Division Lemma
If a and b are 2 positive integers, then
a=bq+r
Where 0rb
Let b=8,
Therefore,
a=8q+r
r=0,1,3,5
Case I:- r=0
Therefore,
a=8q
Cubing both sides, we get
(a)3=(8q)3
a3=512q3
a3=8×(64q3)
Here m=64q3
Case II:- r=1
Therefore,
a=8q+1
Cubing both sides, we get
(a)3=(8q+1)3
a3=(8q)3+(1)3+3(8q)2(1)+3(8q)(1)2
a3=512q3+1+192q2+24q
a3=8(64q3+24q2+3q)+1
Here m=(64q3+24q2+3q)
Case III:- r=3
Therefore,
a=8q+3
Cubing both sides, we get
(a)3=(8q+3)3
a3=(8q)3+(3)3+3(8q)2(3)+3(8q)(3)2
a3=512q3+27+576q2+216q
a3=8(64q3+72q2+27q+3)+3
Here m=(64q3+72q2+27q+3)
Case IV:- r=5
Therefore,
a=8q+5
Cubing both sides, we get
(a)3=(8q+5)3
a3=(8q)3+(5)3+3(8q)2(5)+3(8q)(5)2
a3=512q3+125+960q2+600q
a3=8(64q3+120q2+75q+15)+5
Here m=(64q3+120q2+75q+15)
Case V:- r=7
Therefore,
a=8q+7
Cubing both sides, we get
(a)3=(8q+7)3
a3=(8q)3+(7)3+3(8q)2(7)+3(8q)(7)2
a3=512q3+343+1344q2+1176q
a3=8(64q3+168q2+147q+42)+7
Here m=(64q3+168q2+147q+42)
Thus cube of any positive number can be expressed as 8m or 8m+1 or 8m+3 or 8m+5 or 8m+7.
Hence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Playing with 2 - Digit and 3 - Digit Numbers
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon