It is easy to verify that
AB = BA = [ax−byay+bx−(ay+bx)ax−by]
∴ Adj.A=[a−bba], Adj.B=[x−yyx]
Adj. AB = [ax−by−(ay+bx)(ay+bx)ax−by]
A−1=1|A|Adj.A=1(a2+b2)[a−bba] .......(1)
B−1=1|B|Adj.B=1(x2+y2)[x−yyx] .......(2)
AB−1=1|AB|Adj.AB=1(ax−by)2+(ay+bx)2)[ax−by−(ay+bx)ay+bxax−by]
But (ax−by)2+(ay+bx)2=a2(x2+y2)+b2(x2+y2)=(a2+b2)(x2+y2)
∴ (AB)−1=1(a2+b2)(x2+y2)[ax−by−(ay+bx)ay+bxx−by] .......(3)
Also B−1A−1=1(a2+b2)(x2+y2)[x−yyx][a−bba]
= 1(a2+b2)(x2+y2)[ax−by−(ay+bx)ay+bxax−by] ..............(4)
From (3) and (4) we verify that AB−1=B−1A−1.