Here, (n2−1)2n2+(n+1)2is the (n+1)th component
∴un+1={n2+(n+1)2}un−(n2−1)2un−1
un+1−n2un=(n+1)2{un−(n−1)2un−1}
un−(n−1)2un=n2{un−1−(n−2)2un−2}
...............................................................................................
u3−4u2=a(u2−u1)
Hence by multiplication we obtain
un+1−n2un=32.42.....(n+1)2(u2−u1)
Now, p1=1,q1=1;p2=5,q2=1;
qn+1−n2qn=0
qn+1=n2qn
qn+1=n2(n−1)2....12=(n!)2
pn+1−n2pn=32.42.....(n+1)24
pn+1(n!)2−pn((n−1)!)2=(n+1)2;
p2(1!)2−p21=22;
By addition;-
∴pn+1(n!)2−1=22+32+.....+(n+1)2
pn+1(n!)2=12+22+.....+(n+1)2
qn+1(n!)2=1
pn+1qn+1=∑n2=(n+1)(n+2)(2n+3)6