We have,
1(3−√8)−1(√8−√7)+1(√7−√6)−1(√6−√5)+1(√5−2)=5
L.H.S.
1(3−√8)−1(√8−√7)+1(√7−√6)−1(√6−√5)+1(√5−2)
By rationalize every part and we get
1(3−√8)×(3+√8)(3+√8)−1(√8−√7)×(√8+√7)(√8+√7)+1(√7−√6)×(√7+√6)(√7+√6)−1(√6−√5)×(√6+√5)(√6+√5)+1(√5−2)×(√5+2)(√5+2)
=(3+√8)(9−8)−(√8+√7)8−7+(√7+√6)7−6−(√6+√5)6−5+(√5+2)5−4
=3+√8−√8−√7+√7+√6−√6−√5+√5+2
=3+2=5
R.H.S
Hence proved.