wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that
213587n212n+1=n(n+3)2.

Open in App
Solution

un=(2n+1)un1(n21)un2
unnun1=(n+1){un1(n1)un2}
...............................................
u33u2=4(u2u1)
By multiplication we get
unnun1=(n+1)n.....4(u22u1)
Now, p1=2,q1=1;p2=10,q2=2;
pnnpn1=(n+1)!
qnnqn1=0
qn=nqn1=n(n1)qn2=n!
pnn!pn1(n1)!=n+1;.....p12!p11!=3;
By addition
pnn!2=3+4+.....+(n+1)
pnn!=n(n+3)2
pnqn=n(n+3)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Laws of Indices
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon