1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard IX
Mathematics
Quotient Law
Show that 2 ...
Question
Show that
2
1
−
3
5
−
8
7
−
⋯
n
2
−
1
2
n
+
1
=
n
(
n
+
3
)
2
.
Open in App
Solution
⇒
u
n
=
(
2
n
+
1
)
u
n
−
1
−
(
n
2
−
1
)
u
n
−
2
u
n
−
n
u
n
−
1
=
(
n
+
1
)
{
u
n
−
1
−
(
n
−
1
)
u
n
−
2
}
...............................................
u
3
−
3
u
2
=
4
(
u
2
−
u
1
)
By multiplication we get
u
n
−
n
u
n
−
1
=
(
n
+
1
)
n
.
.
.
.
.4
(
u
2
−
2
u
1
)
Now,
p
1
=
2
,
q
1
=
1
;
p
2
=
10
,
q
2
=
2
;
∴
p
n
−
n
p
n
−
1
=
(
n
+
1
)
!
q
n
−
n
q
n
−
1
=
0
q
n
=
n
q
n
−
1
=
n
(
n
−
1
)
q
n
−
2
=
n
!
p
n
n
!
−
p
n
−
1
(
n
−
1
)
!
=
n
+
1
;
.
.
.
.
.
p
1
2
!
−
p
1
1
!
=
3
;
By addition
p
n
n
!
−
2
=
3
+
4
+
.
.
.
.
.
+
(
n
+
1
)
p
n
n
!
=
n
(
n
+
3
)
2
p
n
q
n
=
n
(
n
+
3
)
2
Suggest Corrections
0
Similar questions
Q.
Show that
1
+
1
2
+
1
3
+
⋯
+
1
n
+
1
=
1
1
−
1
3
−
4
5
−
9
7
−
⋯
n
2
2
n
+
1
.
Q.
Show that
|
1
–
|
3
–
|
5
–
.
.
.
.
|
2
n
−
1
–
–––––
–
>
(
|
n
–
–
)
n
.
Q.
If n is a multiple of
6
, show that each of the series
n
−
n
(
n
−
1
)
(
n
−
2
)
⌊
3
⋅
3
+
n
(
n
−
1
)
(
n
−
2
)
(
n
−
3
)
(
n
−
4
)
⌊
5
⋅
3
2
−
.
.
.
.
.
,
n
−
n
(
n
−
1
)
(
n
−
2
)
⌊
3
⋅
1
3
+
n
(
n
−
1
)
(
n
−
2
)
(
n
−
3
)
(
n
−
4
)
⌊
5
⋅
1
3
2
−
.
.
.
.
.
,
is equal to zero.
Q.
State True or False.
n
n
>
1
×
3
×
5
×
7
×
.
.
.
.
.
.
.
×
(
2
n
−
1
)
.
Q.
Show that
1
(
3
−
√
8
)
−
1
(
√
8
−
√
7
)
+
1
(
√
7
−
√
6
)
−
1
(
√
6
−
√
5
)
+
1
(
√
5
−
2
)
=
5
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Laws of Indices
MATHEMATICS
Watch in App
Explore more
Quotient Law
Standard IX Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app