un=nun−1+3(n+2)un−2;
un−(n+3)un−1=−3{un−1−(n+2)un−2};
...........................................
u3−6u2=−3(u2−5u2)
By multiplication;
un−(n+3)un−1=(−3)n−2(u2−5u1)
Now,
p1=9,q1=1,p2=18,q2=14,
pn−(n+3)pn−1=(−1)n−13n+1
pn(n+3)!−pn−1(n+2)!=(−1)n−13n+1(n+3)!
.....................
p25!−p14!=(−1)325!
By addition;
pn(n+3)!=324!−335!+346!−.....
=19(344!−355!+366!−.....);
and qn(n+3)!−14!=325!−336!+347!−.....
=127(355!−366!+377!−.....)
e−3=1−3+322!−333!+......
=−2+344!−355!+366!−......
∴pnqn=19(e−3+2)÷127(274!−2+344!−e−3)
(e−3+2)−2e−3=6(2e3+1)5e3−2