wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that 9π894sin1(13)=94sin1(223).

Open in App
Solution

L.H.S=9π894sin113

=94(π2sin113) .....(1)

using sin1x+cos1x=π2

sin1x=π2cos1x

Replace x by 13 we get

sin113=π2cos113 .....(2)

Substituting (2) in (1) we get

94(π2sin113)

=94(π2π2+cos113)

=94cos113 .......(3)

Let a=cos113

cosa=13

Now,sin2a=1cos2a

sina=1cos2a

=1(13)2=119=919=89=223

sina=223

a=sin1(223)

Now, from (3)

9π894sin113=94cos113

Putting the value

=94sin1(223)

Hence 9π894sin113=94sin1(223)

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon