p=p1+p2x+p3x2+....q=q1+q2x+q3x2+....
We see that;-
px=co efficient of yx−1 in b1−ay−by2
and qx=co efficient of yx in 11−ay−by2
If α,β are roots of the equation;-
k2−ak−b=0
α+β=a,αβ=−b
∴(bcd+b+d)x2−(abcd+ab+d−bc+cd)x−(abc+c+a)=0
If y=−d+1−c+1−b+1−a+1−d+... by writing −d,−c,−b,−a for a.b.c.d representing in above equation we get;-
(−abc−c−a)y2−(abcd+cd+ad−bc+ab)y−(−bcd−b−d)=0
(abc+c+a)y2+(abcd+cd+ad−bc+ab)y−(bcd+b+d)=0
Now y is the negative root of this equation, y=−1x we have;-
(bcd+b+d)z2−(abcd+ab+ad−bc+cd)z−(abc+c+a)=0
and ∴z=x,y=−1x
or yx=−1