We have,
L.H.S.
cos2A+2cos4A+cos6AcosA+2cos3A+cos5A
=cos2A+cos6A+2cos4AcosA+cos5A+2cos3A
=2cos(2A+6A2)cos(2A−6A2)+2cos4A2cos(A+5A2)cos(A−5A2)+2cos3A
=2cos4A(cos2A+1)2cos3A(cos2A+1)
=cos4Acos3A
=cos(A+3A)cos3A
=cosAcos3A−sinAsin3Acos3A
=cosAcos3Acos3A−sinAsin3Acos3A
=cosA−sinAtan3A
R.H.S.
Hence proved.