wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that cosA1tanA+sinA1cotA=sinA+cosA

Open in App
Solution

Let usfirstfind the value of left hand side (LHS) that is cosA1tanA+sinA1cotA as shown below:

cosA1tanA+sinA1cotA
=cosA1sinAcosA+sinA1cosAsinA(cotx=cosxsinx,tanx=sinxcosx)

=cosAcosAsinAcosA+sinAsinAcosAsinA
=(cosA)(cosA)cosAsinA+(sinA)(sinA)sinAcosA

=cos2AcosAsinAsin2AcosAsinA
=cos2Asin2AcosAsinA
=(cosAsinA)(cosA+sinA)cosAsinA(a2b2=(a+b)(ab))
=cosA+sinA=RHS

Since LHS=RHS,

Hence, cosA1tanA+sinA1cotA=cosA+sinA.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon