ThereshouldbecosAinplaceoftanA−1secondgtermLHS=sinAsecA+tanA−1+cosAcosecA+cotA⇒sinA1cosA+sinAcosA−1+cosA1sinA+cosAsinA+1⇒cosAsinA1+sinA−cosA+cosAsinA1+cosA−sinA⇒cosAsinA[11+sinAcosA+11+cosA−sinA]⇒cosAsinA[1+cosA−sinA+1+sinA−cosA(1+sinA−cosA)(1+cosA−siNA)]⇒2cosAsinA1−(cos2A+sin2A−2cosAsinA)=⇒2cosAsinA1−(1−2cosAsinA)=1=RHS.