wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that tanAsinAsin2A=tanA1+cosA

Open in App
Solution

Let usfirstfind the value of left hand side (LHS) that is tanAsinAsin2A as shown below:

tanAsinAsin2A=sinAcosAsinA1cos2A(tanx=sinxcosx,sin2x=1cos2x)=sinAsinAcosAcosA(1cosA)(1+cosA)(a2b2=(a+b)(ab))=sinA(1cosA)cosA×1(1cosA)(1+cosA)=tanA×1(1+cosA)(tanx=sinxcosx,sin2x=1cos2x)=tanA1+cosA=RHS

Since LHS=RHS,

Hence, tanAsinAsin2A=tanA1+cosA.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon