Since √loga4√ab+logb4√ab=√14loga(ab)+14logb(ab)=√14(1+logab+logba+1=
⎷⎛⎜⎝logab+1logab+24⎞⎟⎠ =
⎷⎛⎜
⎜⎝√|logab|+1√|logab|2⎞⎟
⎟⎠2=12(√|logab|+1√|logab|)Consider √loga4√(b/a)+logb4√(a/b)=√14loga(ba)+14logb(ab)=√14(logab−1+logba−1)=
⎷logbb+1logab−24=∣∣∣√|logab|−1√|logab|∣∣∣2Now, P (say) =√loga4√ab+logb4√ab−√loga4√b/a+logb4√a/b P=12⎧⎨⎩√|logab|+1√|logab|+∣∣
∣∣√|logab|−1√|logab|∣∣
∣∣⎫⎬⎭
Case I : If b≥a≥1,then
P=12{√|logab|+1√|logab|−√|logab|+1√|logab|}
=1√logab
∴2P√logab=21=2
Case II : If 1 < b < a, then
P=12{√|logab|+1√|logab|+√|logab|−1√|logab|}
=√logab
∴2P√logab=2logab