Using principle of mathematical induction
Step 1 n=1, LHS=11−23=16
RHS = 1(1+3)4(1+1)(1+2)=16
Step 2
Suppose n = 2 is true,
11.2.3+12.3.4+...+1k(k+1)(k+2)=k(k+3)4(k+1)=(k+2)
Step 3
Show n = k + 1,
[11.2.3+12.3.4+....+1k(k+1)(k+2)]+1(k+1)(k+2)(k+3)
=k(k+3)4(k+1)(k+2)+1(k+1)(k+2)(k+3)
=(k+1)(k+4)4(k+2)(k+3)
Hence true for n = k.