The nth term of the numerator =n(n+1)2=n2+2n2+n
And nth term of the denominator =n2(n+1)=n3+n2
∴1×22+2×32+...+n×(n+1)212×2+22×3+...+n2×(n+1)=∑nk−1ak∑nk−1ak=∑nk−1(k3+k2+k)∑nk−1(k3+k2)...(1)
Here, n∑k−1(k3+2k2+k)=n2(n+1)24+2n(n+1)(2n+1)6+n(n+1)2=n(n+1)2[n(n+1)2+23(2n+1)+1]=n(n+1)2[3n2+3n+8n+4+66]=n(n+1)12[3n2+11n+10]=n(n+1)12[3n2+6n+5n+10]=n(n+1)12[3n(n+2)+5(n+2)]=n(n+1)(n+2)(3n+5)12...(2)Also,∑nk−1(k3+k2)=n2(n+1)24+n(n+1)(2n+1)6=n(n+1)2[n(n+1)2+2n+13]=n(n+1)2[3n2+3n+4n+26]=n(n+1)12[3n2+7n+2]=n(n+1)12[3n2+6n+n+2]=n(n+1)12[3n(n+2)+1(n+2)]=n(n+1)(n+2)(3n+1)12...(3)
From (1), (2) and (3) we obtain
1×22+2×32+...+n×(n+1)212×2+22×3+...+n2×(n+1)=n(n+1)(n+2)(3n+5)12n(n+1)(n+2)(3n+1)12=n(n+1)(n+2)(3n+5)n(n+1)(n+2)(3n+1)=3n+53n+1
Thus, the given result is proved.