wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that 2cos2nθ+12cosθ+1=(2cosθ1)(2cos2θ1)(2cos22θ1)(2cos2n1θ1).

Open in App
Solution

L.H.S =(2cosθ1)(2cos2θ1)(2cos22θ1)(2cos2n1θ1)
multiplying and dividing by 2cosθ+1

=2cosθ+12cosθ+1(2cosθ1)(2cos2θ1)(2cos22θ1)(2cos2n1θ1)
Now, (2cosθ+1)(2cosθ1)=4cos2θ1=2(1+cos2θ)1=2cos2θ+1
similarly, (2cos2θ+1)(2cos2θ1)=4cos22θ1=2(1+cos22θ)1=2cos22θ+1
......................................
.........................................
(2cos2n1θ+1)(2cos2n1θ1)=4cos22n1θ1=2(1+cos2nθ)1=2cos2nθ+1
Thus L.H.S
=2cos2nθ+12cosθ+1= R.H.S

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon