wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that I=π0xdxa2cos2x+b2sin2x=π2ab

Open in App
Solution

Let I=π0xdxa2cos2x+b2sin2x ...(1)

Using baf(x)dx=baf(a+bx)dx

I=π0(πx)a2cos2(πx)+b2sin2(πx)

I=π0(πx)dxa2cos2x+b2sin2x ...(2)

Adding (1) and (2), we get
2I=π0(x+πx)dxa2cos2x+b2sin2x=ππ0dxa2cos2x+b2sin2x

I=π2π0dxa2cos2x+b2sin2x=2.π2π/20dxa2cos2x+b2sin2x

Divide numerator and denominator by cos2x.
I=ππ/20sec2xdxa2+b2tan2x

Put btanx=t
bsec2xdx=dt.
When x=0t=0
When x=π2t=

I=πb0dta2+t2

=πb.1a[tan1ta]0

=πab[π20]=π22ab

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon