Let
I=∫10logx√(1−x2)dxPut
x=sint⇒dx=costdt
I=∫π20logsintdt ....(1)
Using ∫a0f(x)dx=∫a0f(a−x)dx
∴I=∫π/20logsin(π2−t)dt
⇒I=∫π/20logcostdt ....(2)
Adding (1) and (2), we get
∴2I=∫π/20(logsint+logcost)dt
⇒2I=∫π/20log(sintcost)dt
=∫π/20logsin2t2dt
⇒I=∫π/20logsin2tdt−∫π/20log2dt
⇒I=∫π/20logsin2tdt−π2log2
Put 2t=u⇒2dt=du
∴2I=12∫π0logsinudu−π2log2 (∵f(2a−x)=f(x)
2I=12.2∫π/20logsinudu−π2log2
⇒2I=∫π/20logsinudu−π2log2
2I=I+π2log12
∴I=∫π/20logsintdt=∫π/20logcostdt=π2log12