wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that 10logx(1x2)dx=π2.log12.

Open in App
Solution

Let I=10logx(1x2)dx
Put x=sint
dx=costdt

I=π20logsintdt ....(1)
Using a0f(x)dx=a0f(ax)dx
I=π/20logsin(π2t)dt

I=π/20logcostdt ....(2)

Adding (1) and (2), we get
2I=π/20(logsint+logcost)dt

2I=π/20log(sintcost)dt

=π/20logsin2t2dt

I=π/20logsin2tdtπ/20log2dt

I=π/20logsin2tdtπ2log2
Put 2t=u2dt=du

2I=12π0logsinuduπ2log2 (f(2ax)=f(x)

2I=12.2π/20logsinuduπ2log2

2I=π/20logsinuduπ2log2
2I=I+π2log12
I=π/20logsintdt=π/20logcostdt=π2log12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon