Let
I=∫π/20cos2θdθcos2θ+4sin2θMultiplying numerator and denominator by
sec4θ, we get
I=∫π/20sec2θdθsec2θ+4tan2θsec2θdθ
=∫π/20sec2θdθ4tan4θ+5tan2θ+1dθ
Put t=tanθ⇒dt=sec2θdθ
When θ=0⇒t=
When θ=π2⇒t=∞
Therefore
I=∫∞014t4+5t2+1dt
I=∫∞01(4t2+1)(t2+1)dt .....(1)
Resolving 1(4t2+1)(t2+1) into partial fractions
Let t2=u
1(4u+1)(u+1)=A4u+1+Bu+1 ....(2)
⇒1=A(u+1)+B(4u+1)
When u=−1⇒B=−13
When u=0⇒A=43
Put these values in (2)
1(4u+1)(u+1)=43(4u+1)−13(u+1)
1(4t2+1)(t2+1)=43(4t2+1)−13(t2+1)
Using this in eqn (1), we get
I=∫∞0(43(4t2+1)−13(t2+1))dt
=[23tan−12t]∞0+[13tan−1t]∞0=π2