wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that (x21)dx(x4+3x2+1)tan1(x+1x)=12logtan1(x+1x).

Open in App
Solution

Let I=(x21)dx(x4+3x2+1)tan1(x+1x)
=(11x2)dx(x2+3+1x2)tan1(x+1x)
=(11x2)dx((x+1x)2+1)tan1(x+1x)
Put x+1x=t(11x2)dx=dt
Therefore
I=dt(t2+1)tan1t
Now put tan1t=u
dt1+t2=du

Hence
I=duu

I=logu+C
=logtan1t+C
I=logtan1(x+1x)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon