Show that ∫(x2−1)dx(x4+3x2+1)tan−1(x+1x)=12logtan−1(x+1x).
Open in App
Solution
Let I=∫(x2−1)dx(x4+3x2+1)tan−1(x+1x) =∫(1−1x2)dx(x2+3+1x2)tan−1(x+1x) =∫(1−1x2)dx((x+1x)2+1)tan−1(x+1x) Put x+1x=t⇒(1−1x2)dx=dt Therefore I=∫dt(t2+1)tan−1t Now put tan−1t=u