wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that sinx+cosx(1+sin2x)dx=x.

Open in App
Solution

Let I=sinx+cosxsin2x+1dx=(sinxsin2x+1+cosxsin2x+1)dx
I=I1+I2
Where
I1=sinxsin2x+1dx=sinx2sinxcosx(sinx+cosx)2dx
=tanxsec2xtan3x+tan2x+tanx+1dx
Put t=tanxdt=sec2xdx
Therefore
I1=tt3+t2+t+1dt=(t+12(t2+1)12(t+1))dt
=12tt2+1dt+121t2+1dt121t+1dt
=12tan1t+14log(t2+1)12log(t+1)
=12x+14log(tanx2+1)12log(tanx+1)
And
I2=cosxsin2x+1dx=cosx2sinxcosx+1(sinx+cosx)2dx
=sec2xtan3x+tan2x+tanx+1dx
Put u=tanxdu=sec2xdx
Therefore
I2=1u3+u2+u+1du=(1u2(u2+1)+12(u+1))du
=12uu2+1du+121u2+1du+121u+1du
=14log(u2+1)+12tan1u+12log(t+1)
=14log(tanx2+1)+12x+12log(tanx+1)
Hence
I=12x+12x=x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon