Show that ∫x√a2−x2a2+x2dx=√a2−x2−a√(2)loga√2+√a2−x2a√(2)−√(a2−x2).
Open in App
Solution
I=∫x√a2−x2a2+x2dx x=asint⇒dx=acostdt I=a∫a2sintcos2ta2sin2t+a2dt=a3∫sintcos2ta2sin2t+a2dt =a3∫−sintcos2ta2(cos2t−2)dt Now put u=cost⇒du−sintdt I=a∫u2u2−2du=a∫(2u2−2+1)du =−a∫11−u22du+a∫du =−a√2log(a√2+√a2−x2a√2−√a2−x2)+√a2−x2