Let I=∫√x+1x−1dx
Put t=x+1x−1⇒(1x−1−x+1(x−1)2)dx
I=−2∫√t(1−t)2dt
Put u=√t⇒du=12√tdt
I=−4∫u2(1−u2)2du
=−4∫(−14(u+1)+14(u+1)2+14(u−1)+14(u−1)2)du
=∫1u+1du−∫1(u+1)2du−∫1u−1du−∫1(u−1)2du
=log(u+1)+1u+1−log(u−1)+1u−1
=log(√t+1)+1√t+1−log(√t−1)+1√t−1
=log(√x+1x−1+1)+1√x+1x−1+1−log(√x+1x−1−1)+1√x+1x−1−1
=√x2−1+log(x+√x2−1)