(1+sec2θ)(1+sec4θ)(1+sec8θ)
=(1+1cos2θ)(1+1cos4θ)(1+1cos8θ)
=(cos2θ+1cos2θ)(cos4θ+1cos4θ)(cos8θ+1cos8θ)
=(2cos2θ−1+1cos2θ)(2cos22θcos4θ)(cos24θ+1−1cos8θ)
=8cos2θcos8θcos2θcos4θ
=8sinθcosθcos2θcos4θcosθsinθcos8θ
=4sin2θcos2θcos4θcosθsinθcos8θ
=2sin4θcos4θsinθcos8θcosθ=sin8θcosθcosθsin8θ=tan8θtanθ