Let
→a=17(2^i+3^j+6^k)=27^i+37^j+67^k,
→b=17(3^i−6^j+2^k)=37^i−67^j+27^k,
and →c=17(6^i+2^j−3^k)=67^i+27^j−37^k.
|→a|=√(27)2+(37)2+(67)2=√449+949+3649=1
|→b|=√(37)2+(−67)2+(27)2=√949+3649+949=1
|→c|=√(67)2+(27)2+(−37)2=√3649+449+949=1
Thus, each of the given three vectors is a unit vector.
→a⋅→b=27×37+37×(−67)+67×27=649−1849+1249=0
→b⋅→c=37×67+(−67)×27+27×(−37)=1849−1249−649=0
→c⋅→a=67×27+27×37+(−37)×67=1249+649−1849=0
Hence, the given three vectors are mutually perpendicular to each other.