Show that each of the three given vectors is a unit vectors. also Show that they are mutually ⊥ to each other. →a=17(2^i+3^j+6^k) →b=17(3^i−6^j+2^k) →c=17(6^i+2^j−3^k)
Open in App
Solution
→a=17(2^l+3^j+6^k)
→b=17(3^l+6^j+2^k)
→c==17(6^l+2^j−3^k)
→a=√(27)2+(37)2+(67)2=√449+949+3649=1
→b=√(37)2+(−37)2+(27)2=√949+3649+449=1
→e=√(67)2+(27)2+(−37)2=√3649+449+949=1
each is a unit vector
(→a.→b)=(27×37)+(37×−67)+(67)(27)
=649−−1849+1249
(→b.→c)=(37)(67)+(−67)(27)+(27)(−37)
=1849−1249−649
(→c.→a)=(67)(27)+(27)(37)+(−37)(67)
=1249+649−1849⇒0
∴ given 3 vector are mutally perpendicular to each other.