Consider the given function.
f(x)=2x+cot−1x+log(√1−x2−x)
On differentiating with respect to x, we get
f′(x)=2−11+x2+1√1+x2−x⎛⎜ ⎜⎝d(√1+x2−x)dx⎞⎟ ⎟⎠
f′(x)=2−11+x2+1√1+x2−x(2x2√1+x2−1)
f′(x)=2−11+x2+1√1+x2−x(x−√1+x2√1+x2)
f′(x)=2−11+x2−1√1+x2
f′(x)=2−[1+√1+x21+x2]>0
Hence, f(x) is increasing in R.