Show that f(x)=2x+cot−1x+log(√1+x2−x) is increasing in R.
We have
f(x)=2x+cot−1x+log(√1+x2−x)∴f′(x)=2+(−11+x2)+1(√1+x2−x)(12√1+x2.2x−1)=2−11+x2+1(√1+x2−x).(x−√1+x2)√1+x2=2−11+x2−1√1+x2=2+2x−1−√1+x21+x2=1+2x2−√1+x21+x2
For increasing function, f′(x)≥0
⇒1+2x2√1+x21+x2≤0⇒1+2x2≥√1+x2⇒(1+2x2)2≥1+x2⇒1+4x4+4x2≥1+x2⇒4x4+3x2≥0⇒x2(4x2+3)≥0
Which is true for any real value of x.
Hence, f(x) is increasing in R.