wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that f(x) = 2x − |x| is continuous at x = 0

Open in App
Solution

The given function can be rewritten as:
fx=2x-x, when x>02x+x, when x<00, when x=0
​ fx=x, when x>03x, when x<00, when x=0

We observe
(LHL at x = 0) = limx0-fx=limh0f0-h=limh0f-h=limh0-3h=0


(RHL at x = 0) = limx0+fx=limh0f0+h=limh0fh= limh0h=0

And, f0=0


∴ ​limx0-fx=limx0+fx=f0

Thus, f(x) is continuous at x = 0.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity in an Interval
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon