The given function can be rewritten as: fx=2x-x, when x>02x+x, when x<00, when x=0 ​⇒ fx=x, when x>03x, when x<00, when x=0 We observe (LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0-3h=0 (RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh= limh→0h=0 And, f0=0 ∴ ​limx→0-fx=limx→0+fx=f0 Thus, f(x) is continuous at x = 0.