wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that f(x)=x1+xtanx, x ϵ (0,π2) is maximum when x=cosx

Open in App
Solution

f(x)=x1+xtanxnϵ(0,n2)
f(x)=(tanxxlogcosx)x+(1+xtanx)(1+xtanx)2
f(x)=1+xtanxtanx+xlog(cosx)(1+xtanx)2
f(x)=0
1+xtanxtanx+xlog(cosx)=0
xcosxcosx+xsinx=(cosx+xsinx)(xsinx+cosx)
xcosx(sinx+sinx+xcosx)(cosx+xsinx)2
xsinxcosx+cos2xx2sin2x+xsinxcosxx2cos2xcos2x+x2sin2x+2xcosxsinx
f(x)=0
cos2xx2=0
f(x)=cosx1+sinx=(1sinx)cosx
x=1cosx
f(x)=cosx1sinx=cosx(1+sinx)cos2x(1+sinx)cosx


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon