Show that for a ≥1,f(x)=√3sinx−cosx−2ax+b is decreasing in R.
We have a ≥1,f(x)=√3sinx−cosx−2ax+bf′(x)=√3cosx−(−sinx)−2a=√3cosx+sinx−2a=2[√32.cosx+12sinx]−2a=2[cosπ6.cosx+sinπ6.sinx]−2a=2(cosπ6−x)−2a=2[(cosπ6−x)−a]
We know that, cosxϵ[−1,1]
and a≥1
So, 2[cos(π6−x)−a]≤0∴f′(x)≤0
Hence, f(x) is a decreasing function in R.