asin2θ+bsinθcosθ+ccos2θWe know that sin2θ=2sinθcosθ
⇒asin2θ+b2×2sinθcosθ+ccos2θ
⇒asin2θ+b2sin2θ+ccos2θ+csin2θ−csin2θ [add and substract csin2θ]
⇒(a−c)sin2θ+b2sin2θ+c(cos2θ+sin2θ)
We know sin2θ=1−cos2θ2
⇒(a−c)(1−cos2θ)2+b2sin2θ+c
⇒(a−c)2↓a−c2+c−(a−c)2cos2θ+b2sin2θ+c
⇒a+c2constant+b2sin2θ−(a−c2)cos2θmaxandminvalue
We know asinx−bcosx
max=√a2+b2
min=−√a+b2
max⇒a+c2+√(b2)2+((a−c)2)2
min⇒a+c2−√(b2)2+((a−c)2)2
max value of expansion =a+c2+12√b2+(a−c)2
min value of expansion =a+c2−12√b2+(a−c)2
Hence proved.