wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that for all real values of θ, the expression a sin2θ+bsinθcosθ+ccos2θ lies between 12(a+c)12b2+(ac)2 12(a+c)+12b2+(ac)2

Open in App
Solution

asin2θ+bsinθcosθ+ccos2θ
=a2sin2θ+c2cos2θ+a2sin2θ+c2cos2θ+bsinθcosθ
=(a2c2)sin2θ+c2sin2+c2cos2θ+(c2a2)cos2θ+a2cos2θ+a2sin2θ+b2(2sinθcosθ)
=(a2c2)sin2θ+c2+(c2a2)cos2θ+a2+b2sin2θ
=(a+c2)+(ac2)(sin2θcos2θ)+b2sin2θ
=a+c2+(cos2θ)(ca)2+b2sin2θ
A2+B2Acosα+Bsinα+A2+B2
(ca2)2+(bc)2(cos2θ)(ca)2+b2sin2θ(ca2)2+(dfracb2)2
12b2(ac)2(ca2)cos2θ+b2sin2θ12b2+(ac)2
a+c2b2+(ac)22a+c2(2cosθ)(ca)2+b2sin2θasin2θ+bsinθcosθ+ccos2θa+c2+12b2+(ac)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon