Show that four points (0,−1),(6,7),(−2,3)and(8,3) are the vertices of a rectangle. Also, find its area.
Open in App
Solution
Let A(0-1), B(6,7), C(-2,3) and D(8,3) be the given points. Then ,AD=√(8−0)2+(3+1)2=√64+16=4√5 BC=√(6+2)2+(7−3)2=√64+16=4√5 AC=√(−2−0)2+(3+1)2=√4+16=2√5 and,
BD=√(8−6)2+(3−7)2=√4+6=2√5
∴AD=BCandAC=BD
So, ADBC is a parallelogram
Now
AB=√(6−0)2+(7+1)2=√36+64=10
and,CD=√(8+2)2+(3−3)2=10
Clearly,AB2=AD2+DB2andCD2=CB2+BD2
Hence, ADBC is a rectangle.
Now
,Area of rectangle ADBC=AD×DB=(4√5×2√5)sq. units=40sq. units