Show that
1×22+2×32+……+n×(n+1)212×2+22×3+……+n2×(n+1)=3n+53n+1
1×22+2×32+……+n(n+1)212×2+22×3+……+n2×(n+1)
=∑n(n+1)2∑n2(n+1)=∑n(n2+2n+1)∑(n3+n2)
=∑(n3+2n2+n)∑(n3+n2)=∑n3+2∑n2+∑n∑n3+∑n2
=n2(n+1)24+2n(n+1)(2n+1)6+n(n+1)2n2(n+1)24+n(n+1)(2n+1)6
=n(n+1)2[n(n+1)2+2(2n+1)3+1]n(n+1)2[n(n+1)2+2n+13]
=3n2+11n+103n2+7n+2=3n2+6n+5n+103n2+6n+n+2
=3n(n+2)+5(n+2)3n(n+2)+1(n+2)
=(n+2)(3n+5)(n+2)(3n+1)=3n+53n+1