Given: fx=1+x2, if 0≤x≤12-x, if x>1 We observe (LHL at x = 1) = limx→1-fx=limh→0f1-h=limh→01+1-h2=limh→02+h2-2h=2 (RHL at x = 1) = limx→1+fx=limh→0f1+h= =limh→02-1+h=limh→01-h=1 ∴ limx→1-fx≠limx→1+fx Thus, f(x) is discontinuous at x = 1.