The given function can be rewritten as: fx=x-ax-a, when x>aa-xx-a, when x<a1, when x=a ⇒ fx=1, when x>a-1, when x<a1, when x=a ⇒ fx=1, when x≥a-1, when x<a We observe (LHL at x = a) = limx→a-fx=limh→0fa-h=limh→0-1=-1 (RHL at x = a) = limx→a+fx=limh→0fa+h= limh→01=1 ∴ limx→a-fx≠limx→a+fx Thus, f(x) is discontinuous at x = a.