The given function can be rewritten as: fx=x-x2, when x>0x+x2, when x<02, when x=0 ⇒ fx=0, when x>0x, when x<02, when x=0 We observe (LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0-h=0 (RHL at x = 0) = limx→0+fx=limh→0f0-h=limh→0fh= limh→00=0 And, f0=2 ∴ limx→0-fx =limx→0+fx ≠ f0 Thus, f(x) is discontinuous at x = 0.