Show that:
(i) 1−sin 60∘cos 60∘=tan 60∘−1tan 60∘+1
(ii) cos 30∘+sin 60∘1+sin 30∘+cos 60∘=cos 30∘
(i) 1−sin 60∘cos 60∘=tan 60∘−1tan 60∘+1
L.H.S =1−sin 60∘cos 60∘
=1−√3212
=(2−√32)(12)
=2−√32×21
=2−√3
R.H.S =tan 60∘−1tan 60∘+1
=√3−1√3+1
=√3−1√3+1×√3−1√3−1 [on~rationalising]
=(√3−1)2(√3)2−12
=3+1−2√33−1
=4−2√32
=2−√3
L.H.S = R.H.S
∴ 1−sin 60∘cos 60∘=tan 60∘−1tan 60∘+1
(ii) cos 30∘+sin 60∘1+sin 30∘+cos 60∘=cos 30∘
L.H.S =cos 30∘+sin 60∘1+sin 30∘+cos 60∘
=√32+√321+12+12
=(2√32)2
=√32
R.H.S =cos 30∘=√32
L.H.S = R.H.S
∴cos 30∘+sin 60∘1+sin 30∘+cos 60∘=cos 30∘