Solution:-
Equation to the chord of contact of the tangents drawn from a point (x1,y1), to the parabola y2=4ax is-
yy1=2a(x+x1)
Parameterize parabola as (at²,2at), so tangent at t is-
2aty=2a(x+at2)
⇒ty=x+at2
For points P(p)&Q(q), tangents are-
py=x+ap2
⇒x=py−ap2⟶(i)
qy=x+aq2
⇒x=qy−aq2⟶(ii)
From eqn(i)&(ii), we have
py−ap2=qy−aq2
⇒y(p−q)=a(p2−q2)
⇒y=a(p+q){∵a2−b2=(a−b)(a+b)}
Substituting value of y in eqn(i), we have
x=p×(a(p+q))−ap2
⇒x=apq
If the point (apq,a(p+q)) lies on x+4a=0,
∴apq+4a=0
⇒pq=−4⟶(iii)
But if OP⊥OQ then 2ap(ap2)×2aq(aq2)=−1→pq=−4 which is true because of eqn(iii).
∴∠POQ=90°
Hence, the chord of contact will subtend a right at the vertex.