Step: Show that 3√−5123√343=3√−512343
Given: 3√−5123√343=3√−512343
L.H.S.=3√−5123√343
=−3√5123√343 [∴3√−a=−3√a]
2512225621282642322162824221
7343749771
=3√2×2×2×2×2×2×2×2×23√7×7×7
=−(2×2×2)7
=−87
=−87
Now, R.H.S.=3√−512343
=−3√512343 [∴3√−a=−3√a]
=−3√2×2×2×2×2×2×2×2×27×7×7
=−3√87×87×87
=−87
∵L.H.S=R.H.S.
∴3√−5123√343=3√−512343
Hence proved.